
RE Theory Meets Software Practice:
Lessons from the Software Development Trenches∗

Constance Heitmeyer Ralph Jeffords Ramesh Bharadwaj Myla Archer
Naval Research Laboratory, Washington, DC 20375

{heitmeyer, jeffords, ramesh, archer}@itd.nrl.navy.mil

Abstract
Based on our recent experience in four projects, each focused

on either security-critical or safety-critical software, this paper
evaluates several notions, widely held by RE researchers, for their
utility in practical software development. It describes four notions
which in our view work in practice and five others which do not.

1. Introduction
During the past three years, our research group has

participated in four software projects, each involving ei-
ther security-critical or safety-critical software. In the first
project, we provided evidence in the form of informal
and formal specifications, machine-supported proofs, and
code-to-specification conformance mappings for the certi-
fication of an embedded software system [11]. In three
other projects, we developed requirements specifications
of safety-critical software modules of a NASA system [8].
In all four projects, the software requirements were spec-
ified in the SCR (Software Cost Reduction) tabular nota-
tion [9]. Based on our experience, this paper describes both
the strengths and weaknesses of some notions advocated by
many RE researchers. Section 2 presents four notions for
developing requirements which we believe should be ap-
plied in practice, and Section 3 describes five other notions
which, in our view, do not work in practice and how to rem-
edy them. Section 4 presents some concluding remarks.

This paper discusses both axiomatic and operational
specifications. An axiomatic specification describes the re-
quirements as a set of properties, each property expressed
as a formula in some logic. Goal-based methods, such
as [2], typically use an axiomatic specification to represent
requirements. In contrast, an operational or model-based
specification describes how the system is required to oper-
ate. A state machine model, such as the model that under-
lies the SCR notation, is one approach to constructing an
operational specification of the required software behavior.

2. RE Notions To Adopt and Apply in Practice
In our view, four notions advocated by RE researchers

should be adopted and applied in practice. Applying them
∗This research is supported by ONR and NASA.

will in our view lead to major improvements in software
quality and significant reductions in development costs.
These notions are: 1) formulate axiomatic specifications,
2) state requirements in terms of environmental quantities,
3) specify requirements in a language with a formal seman-
tics, and 4) avoid implementation bias. Although most de-
velopers are familiar with these notions, they seldom for-
mulate requirements that adhere to them. In large part, this
is because developers do not have languages and tools to
help them apply the notions. To express requirements, most
developers use either natural language, or languages such
as Statecharts and Simulink not designed to represent re-
quirements, making it hard to produce requirements speci-
fications consistent with the four notions.

2.1. Value of Axiomatic Specifications
Many RE researchers advocate axiomatic specifications

of software requirements. An example of an axiomatic ap-
proach is the goal-oriented KAOS method for eliciting, rep-
resenting, and reasoning about requirements [2]. As an
example of a property in an axiomatic specification, the
following is a natural language excerpt from an axiomatic
specification of a Therapy Control System [19]:

• Overdose: At no time should the radiation received by· · ·the
patient’s body exceed the dose· · ·in the treatment plan.

Axiomatic specifications have several advantages. First,
critical system properties such as safety and security prop-
erties are expressed most naturally as axioms. In addition,
stating the required system behavior as a set of properties is
often an effective way to communicate with a customer to
elicit and validate requirements.

2.2. Central Role of the Environment
Many researchers, including Parnas [17] and Zave and

Jackson [21], emphasize the importance of representing the
required software system behavior in terms of environmen-
tal quantities and explicitly stating the constraints that natu-
ral laws impose on the required behavior. One major advan-
tage of expressing requirements in terms of the environment
is that the requirements become more understandable.

In Parnas’ model [17], the required system behavior is
described as a relation on monitored and controlled vari-
ables, which represent environmental quantities the system

15th IEEE International Requirements Engineering Conference

1090-705X/07 $25.00 © 2007 IEEE
DOI 10.1109/RE.2007.20

265

Figure 1. System and Software Requirements

monitors and controls. The model includes two relations,
REQ and NAT, each defined on the monitored and con-
trolled variables. NAT specifies the constraints imposed on
the system by natural laws; REQ specifies the required sys-
tem behavior as a relation on the monitored and controlled
variables. In Parnas’ model and in our approach [1, 7], in-
put and output variables are used to model the relationship
between the values read by sensors (written to actuators)
and the values of monitored (controlled) variables. Zave
and Jackson refer to “environment-controlled” and “soft-
ware system-controlled” phenomena which correspond di-
rectly to Parnas’ monitored and controlled variables. Fur-
ther, among the environment-controlled phenomena, they
distinguish phenomena shared with—and directly visible
to—the software system (e.g., values read by sensors) from
phenomena separate from and hidden from the system.

In the Patient Monitoring System [5] shown in Fig-
ure 1, the patient’s heartbeat is a monitored quantity, and
the “notification” sent to the nurse is a controlled quantity.
In [21], the notification is considered to be software system-
controlled and the patient’s heartbeat to be environment-
controlled. Both are hidden from the software system; for
example, the heartbeat requires some indirect method of
measurement, e.g., detection of the heartbeat sound. Identi-
fying the appropriate monitored and controlled variables is
often non-trivial. For example, while the critical property
of the Therapy Control System described in Section 2.1 is
stated in terms of environmental quantities (dose, patient’s
body, etc.), determining the monitored and controlled quan-
tities based on this critical property can be difficult.

2.3. Need a Formal Requirements Language
Formulating requirements in a language with an explicit

formal semantics reduces ambiguity and imprecision in
specifying the required behavior. Further, specifications in
the language can be mechanically checked for properties of
interest, such as consistency and completeness, and critical
application properties, such as safety properties.

2.4. Need to Avoid Implementation Bias
Both researchers and developers agree on the need to

avoid implementation bias. Bias in the requirements spec-
ification not only rules out acceptable implementations but
also makes more difficult 1) understanding the requirements

and 2) designing and implementing the software based on
the requirements. These latter difficulties arise because de-
velopers need to wade through a larger than necessary spec-
ification to separate the actual requirements from the design
details that clutter the specification [12].

A language specifically designed to capture require-
ments makes the inclusion of implementation bias difficult.1

It also provides the constructs needed to specify require-
ments, such as monitored and controlled variables. Thus,
requirements languages, such as RSML [6] and SCR [9],
are preferable to more general-purpose languages, such as
Statecharts, Stateflow, and Simulink. Given too much free-
dom in specifying the required system behavior, specifiers
may find it hard to avoid implementation bias.

3. Impractical RE Notions and Their Cure
This section describes shortcomings in five RE notions

and remedies for each.

3.1. Insufficiency of Axioms (i.e., Goals)

Our experience is that axiomatic specifications alone are
insufficient. In [14], Lamport shares this view, stating:

Knowing what doesn’t work is as important as knowing
what does· · ·The lesson I learned· · ·is that axiomatic
specifications don’t work. The idea of specifying a sys-
tem by writing down all the properties it satisfies seems
perfect. We just list what the system must and must not
do, and we have a completely abstract specification. It
sounds wonderful; it just doesn’t work in practice.

Although axiomatic specifications can play an important
role in specifying requirements, model-based specifications
have several advantages over axiomatic specifications. A
model-based specification can be analyzed mechanically to
detect inconsistent behavior and to determine whether the
specification of the required behavior is complete (e.g., no
missing cases) [9, 6]. If it is executable, an operational
specification can be symbolically executed by domain ex-
perts to validate it. Moreover, a state machine model pro-
vides a natural basis for verifying additional properties of
the specification—for example, invariant properties can be
proved by induction over the reachable states.

Opponents of operational specifications claim that such
specifications encourage implementation bias by including
extra variables, e.g., internal or auxiliary variables; exam-
ples are the modes and terms in SCR specifications. For
example, the authors of [21] point out the dangers of an ex-
plicit machine state in specifications:

[S]pecifying a machine in terms of its states appears
to introduce serious implementation bias, because its
states are internal and not directly observable at the in-
terface between the machine and its environment.

1For an example, see [8], which describes how translating NASA re-
quirements into SCR exposed implementation bias.

266

Lamport [14] counters this argument by describing an inter-
nal variable as “one that appears in a specification but is not
meant to be implemented.”

Whether the use of explicit states and internal variables
in a requirements specification leads to implementation bias
depends on how one establishes that a given “concrete” ma-
chine implements a specified machine. Many specification
methods defining an explicit machine state avoid implemen-
tation bias by defining an implementation to be a concrete
machine with the same observable behavior as the specified
machine. Two specification methods that represent com-
plex values of state variables concretely are SCR [9] and
TIOA [3]. In these methods, a concrete machine is shown
to be an implementation—i.e., exhibits the “same observ-
able behavior”—by establishing either a homomorphism or,
more generally, a simulation relation between machines.

Remedy: Our view is that both an axiomatic specification
(restricted to the critical system properties) and an opera-
tional specification should be developed, thus obtaining the
advantages of both. The construction of operational speci-
fications by software developers is clearly feasible; for ex-
amples of such specifications produced by Navy and NASA
contractors, see [10, 8]. Further, many NASA require-
ments documents contain “shall statements,” natural lan-
guage statements of axioms or goals [8]. One major advan-
tage of building two specifications at different abstraction
levels (but with the same vocabulary) is that finding incon-
sistencies between them can detect errors in one or both.

3.2. Deriving Specifications Is Impractical
Some researchers have shown how an axiomatic specifi-

cation may be transformed into an operational one. For ex-
ample, Pavlovic and Smith provide a category theory frame-
work and tools for semi-automated refinement of axiomatic
specifications not only to operational specifications but for
refinement to code [18]. As another example, Letier and
van Lamsweerde present rules for transforming goal speci-
fications into specifications of software operations [15].

While systematically deriving an operational specifica-
tion from a set of properties is sometimes feasible (as
demonstrated by [18, 15]), like Lamport, we doubt that this
approach scales to practical systems. Moreover, in many
cases, deriving the operational specification from properties
is infeasible; for example, in the security-critical system de-
scribed in [11], the distance between the five abstract secu-
rity properties and the module operations was enormous,
thus making such a derivation impossible.

Remedy: Our view is that developers should build an oper-
ational specification directly rather than formally deriving it
from an axiomatic specification. Our experience is that de-
veloping an operational specification and a set of properties
independently is much more natural and cost-effective than
deriving a more concrete specification from a more abstract
specification.

3.3. Inadequacy of RE Terminology
Many RE researchers (e.g., [21, 19]) and some text-

books, e.g., [4], use the term ‘requirements’ to represent an
abstract axiomatic specification that is not “implementable”
and ‘specification’ to refer to a precise description that is
“implementable”. For example, in the Therapy Control
System [19], the ‘requirements’ are in terms of the pa-
tient’s dosage and excess radiation, abstract notions that are
not implementable, while the ‘specifications’ are in terms
of dose units and radiation bursts, concrete quantities that
are implementable. In this view, the term ‘specification’
captures all the information needed to implement the soft-
ware. This information includes the attributes of I/O devices
which measure the values of monitored variables and set the
values of controlled variables.

Remedy: Like Parnas [17], we have a broader view of
the term ‘specification’. We construct and reason about
“requirements specifications” (as opposed to, e.g., design
and program specifications) and distinguish two differ-
ent requirements specifications, both operational: the Sys-
tem Requirements Specification (SysRS), which describes
REQ and NAT, and the Software Requirements Specifica-
tion (SofRS), which describes how values read from (writ-
ten to) I/O devices are used to estimate (set) the values of
monitored (controlled) variables [1, 7, 16].

3.4. Including I/O Devices in Specifications
To obtain an implementable ‘specification,’ Zave and

Jackson refine the original, unimplementable ‘require-
ments’ by replacing all “hidden” environmental phenom-
ena by implementable phenomena (i.e., those “visible” to
the software system).

In the Patient Monitoring System in Figure 1, a specific
heart monitoring device must be selected to check the pa-
tient’s heartbeat and another device selected to notify the
nurse. In [5], a microphone is chosen as a sensor for
the software-system-visible environmental variable “heart
sound,” and a “buzzer” for the software-system-visible en-
vironmental variable. The problem is that the ‘specification’
is now at a less abstract level—strictly in terms of these
system visible variables. The requirement has been trans-
formed into the specification “If the heart sound falls below
some threshold, then sound the buzzer.” Thus the decisions
regarding sensors and actuators have been integrated into
the implementable specification, preventing easy change of
sensors and actuators.

Remedy: As Parnas states [17]:
Usually, one obtains the clearest and simplest doc-
uments [i.e., requirements, not necessarily imple-
mentable yet] by writing them in terms of the variables
of interest to the user [e.g., heartbeat] in spite of the
fact that the system will monitor other variables [e.g.,
heart sound] in order to determine the value of those
mentioned in the document [e.g., heartbeat].

267

In Parnas’ and related approaches [17, 1, 7, 16], three speci-
fications are written. The first, the SysRS, contains no infor-
mation about I/O devices. The second, the System Design
Specification (SDS), contains descriptions of the selected
I/O devices and the rationale for selecting a particular set of
devices. The third, the SofRS, contains sections listing the
attributes of the I/O devices needed to construct an imple-
mentation (see [13, 16] for examples) and specifying how
the software uses values read from input devices (input vari-
ables) to estimate monitored variable values and sets values
of the output devices (output variables) to change the con-
trolled variable values. Thus, the SofRS contains informa-
tion the developers need to build the device drivers [16].

The major reason for excluding information about I/O
devices from the SysRS is to facilitate change. For exam-
ple, if one decides to switch from a microphone placed on
the patient’s chest to an automated sphygmomanometer to
detect heartbeats, the SysRS need not change. Only sec-
tions in the SDS and the SofRS which describe attributes of
the device that measures heartbeat will change.

3.5. RE Neglect of Module Specifications

Most RE researchers focus on software systems embed-
ded in a physical environment. Yet, in software practice,
there is usually insufficient time and funding to specify and
analyze the requirements of an entire software system.

Remedy: Identify software modules whose correctness is
crucial to the security or safety of the software system,
and specify the required externally visible behavior of only
these modules. While this might be considered software
design (rather than requirements specification), our experi-
ence is that the same principles apply in specifying the re-
quired externally visible behavior of a module as apply in
specifying a software system embedded in a physical envi-
ronment. In the security-critical project in which we par-
ticipated [11], the focus of interest was a separation kernel.
In two of the NASA projects [8], the modules of interest
detected, diagnosed, and recovered from system faults and
thus were critical to the safety of the overall spacecraft.

4. Concluding Remarks

Formal requirements specifications are still quite rare in
software practice. One approach to overcoming this prob-
lem is for specification experts to work with practitioners
to produce an initial requirements specification and then to
provide support when practitioners extend the specification
to include more behavior. Another promising approach is to
develop technology for use in synthesizing an operational
specification from a set of scenarios (see, e.g., [20]). While
the operational specification will be incomplete, it does pro-
vide an initial specification that software developers can ex-
tend and modify to produce a more complete specification.

References
[1] R. Bharadwaj and C. Heitmeyer. Developing high assur-

ance avionics systems with the SCR requirements method.
In Proc. 19th Digital Avionics Sys. Conf., 2000.

[2] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. Sci. of Comp. Prog.,
20(1-2):3–50, 1993.

[3] S. Garland. TIOA User Guide and Reference Manual. Tech-
nical report, MIT CSAIL, Cambridge, MA, 2006.

[4] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of
Software Engineering. Prentice Hall, 2nd edition, 2002.

[5] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A
reference model for requirements and specifications. IEEE
Software, 17(3), 2000.

[6] M. P. Heimdahl and N. G. Leveson. Completeness and Con-
sistency in Hierarchical State-Based Requirements. IEEE
Trans. on Softw. Eng., 22(6):363–377, 1996.

[7] C. Heitmeyer and R. Bharadwaj. Applying the SCR require-
ments method to the light control case study. J. Univ. Comp.
Sci., 6(7), 2000.

[8] C. Heitmeyer and R. Jeffords. Applying a formal require-
ments method to three NASA systems: Lessons learned. In
Proc. 2007 IEEE Aerospace Conf., 2007.

[9] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated Con-
sistency Checking of Requirements Specifications. ACM
Trans. on Softw. Eng. and Methodol., 5:231–261, July 1996.

[10] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model checking to de-
tect safety violations in requirements specifications. IEEE
Trans. on Softw. Eng., 24(11), 1998.

[11] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean.
Formal specification and verification of data separation in a
separation kernel for an embedded system. In Proc. 13th
ACM Conf. on Comp. and Comm. Sec., 2006.

[12] C. L. Heitmeyer and J. D. McLean. Abstract requirements
specification: A new approach and its application. IEEE
Trans. on Softw. Eng., SE-9(5):580–589, 1983.

[13] K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallan-
der. Software requirements for the A-7E aircraft. Technical
Report 3876, Naval Research Lab., Wash., DC, 1978.

[14] L. Lamport. Verification and specifications of concurrent
programs. In REX School/Symp., pages 347–374, 1993.

[15] E. Letier and A. van Lamsweerde. Deriving operational soft-
ware specifications from system goals. In Proc. 10th ACM
SIGSOFT Symp. on Found. of Softw. Eng., 2002.

[16] S. P. Miller and A. Tribble. Extending the four-variable
model to bridge the system-software gap. In Proc. 20th Dig-
ital Avionics Sys. Conf., Oct. 2001.

[17] D. L. Parnas and J. Madey. Functional documents for com-
puter systems. Sci. of Comp. Prog., 25(1):41–61, 1995.

[18] D. Pavlovic and D. Smith. Software development by refine-
ment. In Formal Methods at the Crossroads: From Panacea
to Foundational Support. Springer, 2003. LNCS 2757.

[19] R. Seater and D. Jackson. Requirement progression in prob-
lem frames applied to a proton therapy system. In 14th IEEE
Intern. Req. Eng. Conf. (RE’06), pages 169–178, 2006.

[20] S. Uchitel, G. Brunet, and M. Chechik. Behaviour model
synthesis from properties and scenarios. In ICSE, 2007.

[21] P. Zave and M. Jackson. Four dark corners of requirements
engineering. ACM Trans. Softw. Eng. Methodol., 6(1), 1997.

268

